An explicit formula for period determinant
- [1] Laboratoire J.-V.Poncelet (UMI 2615 du CNRS et Université Indépendante de Moscou) Permanent address: CNRS UMR 5669 Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46 allée d’Italie 69364 Lyon Cedex 07 (France)
Annales de l’institut Fourier (2006)
- Volume: 56, Issue: 4, page 887-917
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGlutsyuk, Alexey A.. "An explicit formula for period determinant." Annales de l’institut Fourier 56.4 (2006): 887-917. <http://eudml.org/doc/10175>.
@article{Glutsyuk2006,
	abstract = {We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.},
	affiliation = {Laboratoire J.-V.Poncelet (UMI 2615 du CNRS et  Université Indépendante de Moscou) Permanent address:  CNRS UMR 5669 Unité de Mathématiques Pures et Appliquées École Normale Supérieure de Lyon 46 allée d’Italie 69364 Lyon Cedex 07 (France)},
	author = {Glutsyuk, Alexey A.},
	journal = {Annales de l’institut Fourier},
	keywords = {Complex polynomial in two variables; homology of nonsingular level curve; monodromy; abelian integral; gradient ideal; period determinant; period matrices; vanishing cycles; Abelian integrals},
	language = {eng},
	number = {4},
	pages = {887-917},
	publisher = {Association des Annales de l’institut Fourier},
	title = {An explicit formula for period determinant},
	url = {http://eudml.org/doc/10175},
	volume = {56},
	year = {2006},
}
TY  - JOUR
AU  - Glutsyuk, Alexey A.
TI  - An explicit formula for period determinant
JO  - Annales de l’institut Fourier
PY  - 2006
PB  - Association des Annales de l’institut Fourier
VL  - 56
IS  - 4
SP  - 887
EP  - 917
AB  - We consider a generic complex polynomial in two variables and a basis in the first homology group of a nonsingular level curve. We take an arbitrary tuple of homogeneous polynomial 1-forms of appropriate degrees so that their integrals over the basic cycles form a square matrix (of multivalued analytic functions of the level value). We give an explicit formula for the determinant of this matrix.
LA  - eng
KW  - Complex polynomial in two variables; homology of nonsingular level curve; monodromy; abelian integral; gradient ideal; period determinant; period matrices; vanishing cycles; Abelian integrals
UR  - http://eudml.org/doc/10175
ER  - 
References
top- V. I. Arnold, A. N. Varchenko, S. M. Gussein-Zade, Singularities of differentiable mappings, (1982), Nauka Publ., Moscow Zbl0545.58001MR685918
- P Deligne, Équations différentielles à points singuliers réguliers, Lect. Notes in Math. (1970), Springer-Verlag, Berlin-New York Zbl0244.14004MR417174
- A. Dimca, M. Saito, Algebraic Gauss-Manin systems and Brieskorn modules, American J. Math. 123 (2001), 163-184 Zbl0990.14004MR1827281
- A. Erdelyi (Editor), Highest transcendental functions, Bateman manuscript project 1 (1953), McGraw Hill Zbl0051.30303
- L. Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), 571-584 Zbl0964.32022MR1668534
- A. A. Glutsyuk, Upper bounds of topology of complex polynomials in two variables Zbl1186.14013
- A. A. Glutsyuk, Yu. S. Ilyashenko, Restricted version of the infinitesimal Hilbert 16th problem
- Yu. S. Ilyashenko, Example of equations having infinite number of limit cycles and arbitrary high Petrovsky-Landis genus, Math. Sbornik 80 (1969), 388-404 MR259239
- Yu. S. Ilyashenko, Generation of limit cycles under the perturbation of the equation , where is a polynomial, Math. Sbornik 78 (1969), 360-373 Zbl0194.40102MR243155
- S. Lang, Algebra, (1965), Addison-Wesley Zbl0193.34701MR197234
- J. Milnor, Singular points of complex hypersurfaces (in Russian), (1971), M. Mir Zbl0224.57014MR356089
- D. Novikov, Modules of Abelian integrals and Picard-Fuchs systems, Nonlinearity 15 (2002), 1435-1444 Zbl1073.14513MR1925422
- I. A. Pushkar, A multidimensional generalization of Ilyashenko’s theorem on abelian integrals (in Russian), Funk. Anal. i Prilozhen. 31 (1997), 34-44, 95 Zbl0930.37036MR1475322
- A. N. Varchenko, Critical values and the determinant of periods (in Russian), Uspekhi Mat. Nauk 268 (1989), 235-236 Zbl0716.32024MR1023108
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 