On holomorphic maps into compact non-Kähler manifolds
Masahide Kato[1]; Noboru Okada
- [1] Sophia University, Department of Mathematics, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554 (Japan)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 1827-1854
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topKato, Masahide, and Okada, Noboru. "On holomorphic maps into compact non-Kähler manifolds." Annales de l’institut Fourier 54.6 (2004): 1827-1854. <http://eudml.org/doc/116161>.
@article{Kato2004,
	abstract = {We study the extension problem of holomorphic maps $\sigma : H \rightarrow X$ of a Hartogs domain
$H$ with values in a complex manifold $X$. For compact Kähler manifolds as well as
various non-Kähler manifolds, the maximal domain $\Omega _ \sigma $ of extension for
$\sigma $ over $\Delta $ is contained in a subdomain of $\Delta $. For such manifolds, we
define, in this paper, an invariant Hex$_n(X)$ using the Hausdorff dimensions of the
singular sets of $\sigma $’s and study its properties to deduce informations on the
complex structure of $X$.},
	affiliation = {Sophia University, Department of Mathematics, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554 (Japan)},
	author = {Kato, Masahide, Okada, Noboru},
	journal = {Annales de l’institut Fourier},
	keywords = {extension of holomorphic map; envelope of holomorphy; non-Kähler manifold; Hartogs domain},
	language = {eng},
	number = {6},
	pages = {1827-1854},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {On holomorphic maps into compact non-Kähler manifolds},
	url = {http://eudml.org/doc/116161},
	volume = {54},
	year = {2004},
}
TY  - JOUR
AU  - Kato, Masahide
AU  - Okada, Noboru
TI  - On holomorphic maps into compact non-Kähler manifolds
JO  - Annales de l’institut Fourier
PY  - 2004
PB  - Association des Annales de l'Institut Fourier
VL  - 54
IS  - 6
SP  - 1827
EP  - 1854
AB  - We study the extension problem of holomorphic maps $\sigma : H \rightarrow X$ of a Hartogs domain
$H$ with values in a complex manifold $X$. For compact Kähler manifolds as well as
various non-Kähler manifolds, the maximal domain $\Omega _ \sigma $ of extension for
$\sigma $ over $\Delta $ is contained in a subdomain of $\Delta $. For such manifolds, we
define, in this paper, an invariant Hex$_n(X)$ using the Hausdorff dimensions of the
singular sets of $\sigma $’s and study its properties to deduce informations on the
complex structure of $X$.
LA  - eng
KW  - extension of holomorphic map; envelope of holomorphy; non-Kähler manifold; Hartogs domain
UR  - http://eudml.org/doc/116161
ER  - 
References
top- G. Dloussky, Enveloppes d'holomorphie et prolongements d'hypersurfaces, Séminaire Pierre Lelong 1975-76 578 (1977), 215-235, Springer Zbl0372.32008
- F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann 140 (1960), 94-123 Zbl0095.28004MR148939
- S. M. Ivashkovich, The Hartogs-type extension theorem for the meromorphic maps into compact Kähler manifolds, Invent. math. 109 (1992), 47-54 Zbl0738.32008MR1168365
- S. M. Ivashkovich, Extension properties of meromorphic mappings with values in non-Kähler complex manifolds, (2003) Zbl1081.32010
- Ma. Kato, Factorization of compact complex 3-folds which admit certain projective structures, Tohoku Math. J. 41 (1989), 359-397 Zbl0686.32016MR1007095
- Ma. Kato, Examples on an Extension Problem of Holomorphic Maps and a Holomorphic 1-Dimensional Foliation, Tokyo J. Math 13 (1990), 139-146 Zbl0718.32014MR1059019
- M. Krachni, Prolongement d'applications holomorphes, Bull. Soc. math. France 118 (1990), 229-240 Zbl0718.32013MR1087380
- B. Malgrange, Lectures on the theory of functions of several complex variables, (1958), Tata Inst. Fund. Research, Bombay Zbl0184.10903
- N. Okada, An example of holomorphic maps which cannot be extended meromorphically across a closed fractal subset, Mini-Conference on Algebraic Geometry (Saitama University, Urawa) (2000), 42-53
- B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. J 15 (1968), 111-120 Zbl0165.40503MR224865
- Y. T. Siu, Techniques of extension of analytic objects, (1974), Dekker, New York Zbl0294.32007MR361154
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 