Dual finite element analysis for unilateral boundary value problems
Aplikace matematiky (1977)
- Volume: 22, Issue: 1, page 14-51
 - ISSN: 0862-7940
 
Access Full Article
topHow to cite
topHlaváček, Ivan. "Dual finite element analysis for unilateral boundary value problems." Aplikace matematiky 22.1 (1977): 14-51. <http://eudml.org/doc/14989>.
@article{Hlaváček1977,
	author = {Hlaváček, Ivan},
	journal = {Aplikace matematiky},
	keywords = {dual approach; bilateral boundary value problems; elliptic equations; Signorini’s type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates; dual approach; bilateral boundary value problems; elliptic equations; Signorini's type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates},
	language = {eng},
	number = {1},
	pages = {14-51},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Dual finite element analysis for unilateral boundary value problems},
	url = {http://eudml.org/doc/14989},
	volume = {22},
	year = {1977},
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - Dual finite element analysis for unilateral boundary value problems
JO  - Aplikace matematiky
PY  - 1977
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 22
IS  - 1
SP  - 14
EP  - 51
LA  - eng
KW  - dual approach; bilateral boundary value problems; elliptic equations; Signorini’s type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates; dual approach; bilateral boundary value problems; elliptic equations; Signorini's type; model problems; asymptotic order of convergence; finite element approximation; numerical solution; a posteriori error estimates; two-sided estimates
UR  - http://eudml.org/doc/14989
ER  - 
References
top- J. P. Aubin H. G. Burchard, Some aspects of the method of the hypercircle applied to elliptic variational problems, Num. sol. PDE-II, SYNSPADE (1970), 1-67. (1970) MR0285136
 - I. Hlaváček, Some equilibrium and mixed models in the finite element method, Proceedings of the St. Banach Internat. Math. Center, Warsaw, (1976). (1976)
 - J. Haslinger I. Hlaváček, Convergence of a finite element method based on the dual variational formulation, Apl. mat. 21 (1976), 43 - 65. (1976) MR0398126
 - G. Fichera, Boundary value problems of elasticity with unilateral constraints, Encyclopedia of Physics, ed. S. Flügge, Vol. VIa/2, Springer, Berlin 1972. (1972)
 - J. Céa, Optimisation, théorie et algorithmes, Dunod, Paris 1971. (1971) MR0298892
 - J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967. (1967) MR0227584
 - U. Mosco G. Strang, 10.1090/S0002-9904-1974-13477-4, Bull. Am. Math. Soc. 80 (1974), 308-312. (1974) MR0331818DOI10.1090/S0002-9904-1974-13477-4
 - J. H. Bramble M. Zlámal, Triangular elements in the finite element method, Math. Соmр. 24 (1970), 809-820. (1970) MR0282540
 - G. Zoutendijk, Methods of feasible directions, Elsevier, Amsterdam 1960. (1960) Zbl0097.35408
 - I. Hlaváček, Dual finite element analysis for elliptic problems with obstacles on the boundary, Apl. mat. 22 (to appear).
 
Citations in EuDML Documents
top- Jaroslav Haslinger, Ján Lovíšek, Mixed variational formulation of unilateral problems
 - Ivan Hlaváček, Ján Lovíšek, A finite element analysis for the Signorini problem in plane elastostatics
 - Ivan Hlaváček, Dual finite element analysis for elliptic problems with obstacles on the boundary. I
 - Jaroslav Haslinger, Finite element analysis for unilateral problems with obstacles on the boundary
 - Ivan Hlaváček, Dual finite element analysis for semi-coercive unilateral boundary value problems
 - Jiří Nedoma, On a type of Signorini problem without friction in linear thermoelasticity
 - Jaroslav Haslinger, Ivan Hlaváček, Contact between elastic bodies. III. Dual finite element analysis
 - Jaroslav Haslinger, Dual finite element analysis for an inequality of the 2nd order
 - Van Bon Tran, Finite element analysis of primal and dual variational formulations of semicoercive elliptic problems with nonhomogeneous obstacles on the boundary
 - Ivan Hlaváček, Convergence of dual finite element approximations for unilateral boundary value problems
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.