Quadratic splines smoothing the first derivatives
Applications of Mathematics (1992)
- Volume: 37, Issue: 2, page 149-156
 - ISSN: 0862-7940
 
Access Full Article
topAbstract
topHow to cite
topKobza, Jiří. "Quadratic splines smoothing the first derivatives." Applications of Mathematics 37.2 (1992): 149-156. <http://eudml.org/doc/15706>.
@article{Kobza1992,
	abstract = {The extremal property of quadratic splines interpolating the first derivatives is proved. Quadratic spline smoothing the given values of the first derivative, depending on the knot weights $w_i$ and smoothing parameter $\alpha $, is then studied. The algorithm for computing appropriate parameters of such splines is given and the dependence on the smoothing parameter $\alpha $ is mentioned.},
	author = {Kobza, Jiří},
	journal = {Applications of Mathematics},
	keywords = {interpolation; smoothing; quadratic spline; interpolation; smoothing; quadratic spline},
	language = {eng},
	number = {2},
	pages = {149-156},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {Quadratic splines smoothing the first derivatives},
	url = {http://eudml.org/doc/15706},
	volume = {37},
	year = {1992},
}
TY  - JOUR
AU  - Kobza, Jiří
TI  - Quadratic splines smoothing the first derivatives
JO  - Applications of Mathematics
PY  - 1992
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 37
IS  - 2
SP  - 149
EP  - 156
AB  - The extremal property of quadratic splines interpolating the first derivatives is proved. Quadratic spline smoothing the given values of the first derivative, depending on the knot weights $w_i$ and smoothing parameter $\alpha $, is then studied. The algorithm for computing appropriate parameters of such splines is given and the dependence on the smoothing parameter $\alpha $ is mentioned.
LA  - eng
KW  - interpolation; smoothing; quadratic spline; interpolation; smoothing; quadratic spline
UR  - http://eudml.org/doc/15706
ER  - 
References
top- Ahlberg J. H., Nilson E. N., Walsh J. L., The Theory of Splines and Their Aplications, Academic Press, N.Y., 1967. (1967) MR0239327
 - de Boor C., A Practical Guide to Splines, Springer Verlag, N.Y., 1978. (1978) Zbl0406.41003MR0507062
 - Kobza J., An algorithm for parabolic splines, Acta UPO, FRN 88 (1987), 169-185. (1987) MR1033338
 - Kobza J., Quadratic splines interpolating the first derivatives, Acta UPO, FRN 100 (1991), 219-233. (1991) MR1166439
 - Kobza J., Zápalka D., Natural and smoothing quadratic spline, Applications of Mathematics 36 no. 3 (1991), 187-204. (1991) MR1109124
 - Laurent P.-J., Approximation et Optimization, Hermann, Paris, 1972. (1972) MR0467080
 - Sallam S., Tarazi M.N., Quadratic spline interpolation on uniform meshes, In Splines in Numerical Analysis (Schmidt J.W., Spaeth H., eds.), Akademie-Verlag, Berlin, 1989, pp. 145-150. (1989) Zbl0677.65010MR1004259
 - Schultz M., Spline Analysis, Prentice-Hall, Englewood Cliffs, N.Y., 1973. (1973) Zbl0333.41009MR0362832
 - Vasilenko V.A., Spline Functions: Theory, Algorithms, Programs, Nauka, SO, Novosibirsk, 1983. (In Russian.) (1983) Zbl0529.41013MR0721970
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.