A CAT algorithm for the exhaustive generation of ice piles
Paolo Massazza; Roberto Radicioni
RAIRO - Theoretical Informatics and Applications (2011)
- Volume: 44, Issue: 4, page 525-543
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topMassazza, Paolo, and Radicioni, Roberto. "A CAT algorithm for the exhaustive generation of ice piles." RAIRO - Theoretical Informatics and Applications 44.4 (2011): 525-543. <http://eudml.org/doc/193074>.
@article{Massazza2011,
	abstract = {
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the 
ice pile model$\mbox\{IPM\}_k$(n),
a generalization of the
 sand pile model$\mbox\{SPM\}$(n).
More precisely, for any fixed integer k, we show that
the negative lexicographic ordering naturally identifies a tree structure on the lattice
$\mbox\{IPM\}_k$(n):
this lets us design an algorithm which generates all the ice piles of
$\mbox\{IPM\}_k$(n)
in amortized time
O(1)
and in space
O($\sqrt n$).
},
	author = {Massazza, Paolo, Radicioni, Roberto},
	journal = {RAIRO - Theoretical Informatics and Applications},
	keywords = {Sand pile model; ice pile model; integer partitions; 
exhaustive generation; CAT algorithms; discrete dynamical systems},
	language = {eng},
	month = {2},
	number = {4},
	pages = {525-543},
	publisher = {EDP Sciences},
	title = {A CAT algorithm for the exhaustive generation of ice piles},
	url = {http://eudml.org/doc/193074},
	volume = {44},
	year = {2011},
}
TY  - JOUR
AU  - Massazza, Paolo
AU  - Radicioni, Roberto
TI  - A CAT algorithm for the exhaustive generation of ice piles
JO  - RAIRO - Theoretical Informatics and Applications
DA  - 2011/2//
PB  - EDP Sciences
VL  - 44
IS  - 4
SP  - 525
EP  - 543
AB  - 
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the 
ice pile model$\mbox{IPM}_k$(n),
a generalization of the
 sand pile model$\mbox{SPM}$(n).
More precisely, for any fixed integer k, we show that
the negative lexicographic ordering naturally identifies a tree structure on the lattice
$\mbox{IPM}_k$(n):
this lets us design an algorithm which generates all the ice piles of
$\mbox{IPM}_k$(n)
in amortized time
O(1)
and in space
O($\sqrt n$).
LA  - eng
KW  - Sand pile model; ice pile model; integer partitions; 
exhaustive generation; CAT algorithms; discrete dynamical systems
UR  - http://eudml.org/doc/193074
ER  - 
References
top- P. Bak, C. Tang and K. Wiesenfeld, Self-organized criticality. Phys. Rev. A38 (1988) 364–374.
- T. Brylawski, The lattice of integer partitions. Discrete Math. 6 (1973) 201–219.
- S. Corteel and D. Gouyou-Beauchamps, Enumeration of sand piles. Discrete Math. 256 (2002) 625–643.
- E. Duchi, R. Mantaci, H.D. Phan and D. Rossin, Bidimensional sand pile and ice pile models. PU.M.A. 17 (2007) 71–96.
- E. Goles and M.A. Kiwi, Games on line graphs and sand piles. Theoret. Comput. Sci. 115 (1993) 321–349.
- E. Goles, M. Morvan and H.D. Phan, Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51–64.
- M. Latapy, R. Mantaci, M. Morvan and H.D. Phan, Structure of same sand piles model. Theoret. Comput. Sci. 262 (2001) 525–556.
- P. Massazza, A CAT algorithm for sand piles. PU.M.A. 19 (2008) 147–158.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 