Distribution of values of Hecke characters of infinite order
Acta Arithmetica (1998)
- Volume: 85, Issue: 3, page 279-291
 - ISSN: 0065-1036
 
Access Full Article
topAbstract
topHow to cite
topC. S. Rajan. "Distribution of values of Hecke characters of infinite order." Acta Arithmetica 85.3 (1998): 279-291. <http://eudml.org/doc/207169>.
@article{C1998,
	abstract = {We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.},
	author = {C. S. Rajan},
	journal = {Acta Arithmetica},
	keywords = {distribution of values of Hecke characters; Riemann hypothesis},
	language = {eng},
	number = {3},
	pages = {279-291},
	title = {Distribution of values of Hecke characters of infinite order},
	url = {http://eudml.org/doc/207169},
	volume = {85},
	year = {1998},
}
TY  - JOUR
AU  - C. S. Rajan
TI  - Distribution of values of Hecke characters of infinite order
JO  - Acta Arithmetica
PY  - 1998
VL  - 85
IS  - 3
SP  - 279
EP  - 291
AB  - We show that the number of primes of a number field K of norm at most x, at which the local component of an idele class character of infinite order is principal, is bounded by O(x exp(-c√(log x))) as x → ∞, for some absolute constant c > 0 depending only on K.
LA  - eng
KW  - distribution of values of Hecke characters; Riemann hypothesis
UR  - http://eudml.org/doc/207169
ER  - 
References
top- [Dav] H. Davenport, Multiplicative Number Theory, 2nd ed., Grad. Texts in Math. 74, Springer, New York, 1980.
 - [He] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen, Zweite Mitteilung, Math. Z. 6 (1920), 11-51; reprinted in Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1959, 249-289.
 - [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
 - [LO] J. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in: Algebraic Number Fields, A. Fröhlich (ed.), Academic Press, New York, 1977, 409-464. Zbl0362.12011
 - [La] S. Lang, Algebraic Number Theory, Grad. Texts in Math. 110, Springer, New York, 1986.
 - [LT] S. Lang and H. Trotter, Frobenius Distributions in GL₂ Extensions, Lecture Notes in Math. 504, Springer, New York, 1976.
 - [MR] M. R. Murty and C. S. Rajan, Stronger multiplicity one theorems for forms of general type on GL₂, in: Analytic Number Theory, Proc. Conf. in Honor of Heini Halberstam, Vol. 2, B. C. Berndt, H. G. Diamond and A. J. Hildebrand (eds.), Birkhäuser, Boston, 1996, 669-683. Zbl0874.11041
 - [VKM] V. K. Murty, Explicit formulae and the Lang-Trotter conjecture, Rocky Mountain J. Math. 15 (1985), 535-551. Zbl0587.14009
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.