A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
Fundamenta Mathematicae (1981)
- Volume: 114, Issue: 2, page 159-171
- ISSN: 0016-2736
Access Full Article
topHow to cite
topAoki, Nobuo. "A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism." Fundamenta Mathematicae 114.2 (1981): 159-171. <http://eudml.org/doc/211294>.
@article{Aoki1981,
	author = {Aoki, Nobuo},
	journal = {Fundamenta Mathematicae},
	keywords = {compact abelian group; entropy; Bernoulli; automorphism; sigma-invariant subgroups},
	language = {eng},
	number = {2},
	pages = {159-171},
	title = {A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism},
	url = {http://eudml.org/doc/211294},
	volume = {114},
	year = {1981},
}
TY  - JOUR
AU  - Aoki, Nobuo
TI  - A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
JO  - Fundamenta Mathematicae
PY  - 1981
VL  - 114
IS  - 2
SP  - 159
EP  - 171
LA  - eng
KW  - compact abelian group; entropy; Bernoulli; automorphism; sigma-invariant subgroups
UR  - http://eudml.org/doc/211294
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 