Distinguishing two partition properties of ω1
Fundamenta Mathematicae (1998)
- Volume: 155, Issue: 1, page 95-99
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topKomjáth, Péter. "Distinguishing two partition properties of ω1." Fundamenta Mathematicae 155.1 (1998): 95-99. <http://eudml.org/doc/212246>.
@article{Komjáth1998,
	abstract = {It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.},
	author = {Komjáth, Péter},
	journal = {Fundamenta Mathematicae},
	keywords = {partition calculus; ; iterated forcing; partition relations},
	language = {eng},
	number = {1},
	pages = {95-99},
	title = {Distinguishing two partition properties of ω1},
	url = {http://eudml.org/doc/212246},
	volume = {155},
	year = {1998},
}
TY  - JOUR
AU  - Komjáth, Péter
TI  - Distinguishing two partition properties of ω1
JO  - Fundamenta Mathematicae
PY  - 1998
VL  - 155
IS  - 1
SP  - 95
EP  - 99
AB  - It is consistent that $ω_1→(ω_1,(ω:2))^2$ but $ω_1↛(ω_1,ω+2)^2$.
LA  - eng
KW  - partition calculus; ; iterated forcing; partition relations
UR  - http://eudml.org/doc/212246
ER  - 
References
top- [1] J. E. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203. Zbl0257.02054
- [2] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
- [3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. Zbl0025.31002
- [4] P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. Zbl0071.05105
- [5] A. Hajnal, Some results and problems on set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298. Zbl0106.00901
- [6] S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720. Zbl0532.03023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 