Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks
Yu. Vassilevski; S. Simakov; V. Salamatova; Yu. Ivanov; T. Dobroserdova
Mathematical Modelling of Natural Phenomena (2011)
- Volume: 6, Issue: 7, page 82-99
 - ISSN: 0973-5348
 
Access Full Article
topAbstract
topHow to cite
topVassilevski, Yu., et al. "Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks." Mathematical Modelling of Natural Phenomena 6.7 (2011): 82-99. <http://eudml.org/doc/222340>.
@article{Vassilevski2011,
	abstract = {There are two mathematical models of elastic walls of healthy and atherosclerotic blood
          vessels developed and studied. The models are included in a numerical model of global
          blood circulation via recovery of the vessel wall state equation. The joint model allows
          us to study the impact of arteries atherosclerotic disease of a set of arteries on
          regional haemodynamics.},
	author = {Vassilevski, Yu., Simakov, S., Salamatova, V., Ivanov, Yu., Dobroserdova, T.},
	journal = {Mathematical Modelling of Natural Phenomena},
	keywords = {atherosclerosis; mathematical modelling; blood flow; arterial wall; wall state equation; mathematical modeling},
	language = {eng},
	month = {6},
	number = {7},
	pages = {82-99},
	publisher = {EDP Sciences},
	title = {Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks},
	url = {http://eudml.org/doc/222340},
	volume = {6},
	year = {2011},
}
TY  - JOUR
AU  - Vassilevski, Yu.
AU  - Simakov, S.
AU  - Salamatova, V.
AU  - Ivanov, Yu.
AU  - Dobroserdova, T.
TI  - Vessel Wall Models for Simulation of Atherosclerotic Vascular Networks
JO  - Mathematical Modelling of Natural Phenomena
DA  - 2011/6//
PB  - EDP Sciences
VL  - 6
IS  - 7
SP  - 82
EP  - 99
AB  - There are two mathematical models of elastic walls of healthy and atherosclerotic blood
          vessels developed and studied. The models are included in a numerical model of global
          blood circulation via recovery of the vessel wall state equation. The joint model allows
          us to study the impact of arteries atherosclerotic disease of a set of arteries on
          regional haemodynamics.
LA  - eng
KW  - atherosclerosis; mathematical modelling; blood flow; arterial wall; wall state equation; mathematical modeling
UR  - http://eudml.org/doc/222340
ER  - 
References
top- G. Cheng, H. Loree, R. Kamm, M. Fishbein, R. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation.Circulation, 87 (1993), 1179–1187.
 - L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics, Vol. 1. Heidelberg, Springer, 2009.
 - A. Green, J. Adkins. Large Elastic Deformation. Clarendon Press, Oxford, 1970.
 - G. Holzapfel, R. Ogden (Eds.). Mechanics of Biological Tissue, Vol. XII. 2006.
 - G. Holzapfel, R. Ogden. Constitutive modelling of arteries.Proc. R. Soc. A, 466 (2010), No. 2118, 1551–1597.
 - J. Humphrey. Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A459, (2003), 3–46.
 - V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski. Mathematical modelling of cardio-vascular hemodynamics with account of neuroregulation. Matem. Mod., 19 (2007), No. 3, 15–28 (in Russian).
 - R. Lee, A. Grodzinsky, E. Frank, R. Kamm, F. Schoen. Structuredependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques.Circulation, 83 (1991), 1764–1770.
 - J. Ohayonet al.Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: Potential impact for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol.293 (2007), 1987–1996.
 - T.J. Pedley, X.Y. Luo. Modelling flow and oscillations in collapsible tubes.Theor. Comp. Fluid Dyn., 10 (1998), No. 1–4, f–294.
 - A. Quarteroni, L. Formaggia. Mathematical modelling and numerical simulation of the cardiovascular system. In: Handbook of numerical analysis, Vol.XII, Amsterdam, Elsevier, 2004, 3–127.
 - W. Riley, R. Barnes, et al.Ultrasonic measurement of the elastic modulus of the common carotid. The Atherosclerosis Risk in Communities (ARIC) Study.Stroke, 23 (1992), 952–956.
 - M. Rosar, C. Peskin. Fluid flow in collapsible elastic tubes: a three-dimensional numerical model.New York J. Math., 7 (2001), 281–302.
 - S.S. Simakov, A.S. Kholodov. Computational study of oxygen concentration in human blood under low frequency disturbances.Mat. Mod. Comp. Sim., 1 (2009), 283–295.
 - C. Tu, C. Peskin. Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods.SIAM J. Sci. Stat. Comp., 6 (1992), No. 13, 1361–1376.
 - Y.V. Vassilevski, S.S. Simakov, S.A. Kapranov. A multi-model approach to intravenous filter optimization.Int. J. Num. Meth. Biomed. Engrg., 26 (2010), No. 7, 915–925.
 - Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova. Blood flow simulation in atherosclerotic vascular network using fiber-spring representation of diseased wall. Math. Model. Nat. Phen. (in press), 2011.
 - R. Vito, S. Dixon. Blood vessel constitutive models, 1995-2002. Annu. Rev. Biomed. Engrg., 5 (2003), 413–439.
 - R. Wulandana. A nonlinear and inelastic constitutive equation for human cerebral arterial and aneurysm walls. Dissertation, University of Pittsburgh, Pittsburgh, 2003.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.