On the -torsion subgroup of the Brauer group of a number field
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 1, page 199-204
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKisilevsky, Hershy, and Sonn, Jack. "On the $n$-torsion subgroup of the Brauer group of a number field." Journal de théorie des nombres de Bordeaux 15.1 (2003): 199-204. <http://eudml.org/doc/249102>.
@article{Kisilevsky2003,
	abstract = {Given a number field $K$ Galois over the rational field $\mathbb \{Q\}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.},
	author = {Kisilevsky, Hershy, Sonn, Jack},
	journal = {Journal de théorie des nombres de Bordeaux},
	language = {eng},
	number = {1},
	pages = {199-204},
	publisher = {Université Bordeaux I},
	title = {On the $n$-torsion subgroup of the Brauer group of a number field},
	url = {http://eudml.org/doc/249102},
	volume = {15},
	year = {2003},
}
TY  - JOUR
AU  - Kisilevsky, Hershy
AU  - Sonn, Jack
TI  - On the $n$-torsion subgroup of the Brauer group of a number field
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2003
PB  - Université Bordeaux I
VL  - 15
IS  - 1
SP  - 199
EP  - 204
AB  - Given a number field $K$ Galois over the rational field $\mathbb {Q}$, and a positive integer $n$ prime to the class number of $K$, there exists an abelian extension $L/K$ (of exponent $n$) such that the $n$-torsion subgroup of the Brauer group of $K$ is equal to the relative Brauer group of $L/K$.
LA  - eng
UR  - http://eudml.org/doc/249102
ER  - 
References
top- [1] E. Aljadeff, J. Sonn, Relative Brauer groups and m-torsion. Proc. Amer. Math. Soc.130 (2002), 1333-1337. Zbl1099.11066MR1879954
- [2] B. Fein, M. Schacher, Relative Brauer groups I. J. Reine Angew. Math.321 (1981), 179-194. Zbl0436.13003MR597988
- [3] B. Fein, W. Kantor, M. Schacher, Relative Brauer groups II. J. Reine Angew. Math.328 (1981), 39-57. Zbl0457.13004MR636194
- [4] B. Fein, M. Schacher, Relative Brauer groups III. J. Reine Angew. Math.335 (1982), 37-39. Zbl0484.13005MR667461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 