-vector fields in Riemannian spaces
Irena Hinterleitner; Volodymyr A. Kiosak
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 385-390
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHinterleitner, Irena, and Kiosak, Volodymyr A.. "$\phi ({\rm Ric})$-vector fields in Riemannian spaces." Archivum Mathematicum 044.5 (2008): 385-390. <http://eudml.org/doc/250510>.
@article{Hinterleitner2008,
	abstract = {In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, $\{\textbf \{Ric\}\}$, $\mu =\mbox\{const.\}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox\{\textbf \{Ric\}\})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox\{\textbf \{Ric\}\})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox\{\textbf \{Ric\}\})$-vector fields in symmetric spaces are given.},
	author = {Hinterleitner, Irena, Kiosak, Volodymyr A.},
	journal = {Archivum Mathematicum},
	keywords = {special vector field; pseudo-Riemannian spaces; Riemannian spaces; symmetric spaces; Kasner metric; special vector field; pseudo-Riemannian space; Riemannian space; symmetric space; Kasner metric},
	language = {eng},
	number = {5},
	pages = {385-390},
	publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
	title = {$\phi (\{\rm Ric\})$-vector fields in Riemannian spaces},
	url = {http://eudml.org/doc/250510},
	volume = {044},
	year = {2008},
}
TY  - JOUR
AU  - Hinterleitner, Irena
AU  - Kiosak, Volodymyr A.
TI  - $\phi ({\rm Ric})$-vector fields in Riemannian spaces
JO  - Archivum Mathematicum
PY  - 2008
PB  - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL  - 044
IS  - 5
SP  - 385
EP  - 390
AB  - In this paper we study vector fields in Riemannian spaces, which satisfy $\nabla \varphi =\mu $, ${\textbf {Ric}}$, $\mu =\mbox{const.}$ We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and $\varphi (\mbox{\textbf {Ric}})$-vector fields cannot exist simultaneously. It was found that Riemannian spaces with $\varphi (\mbox{\textbf {Ric}})$-vector fields of constant length have constant scalar curvature. The conditions for the existence of $\varphi (\mbox{\textbf {Ric}})$-vector fields in symmetric spaces are given.
LA  - eng
KW  - special vector field; pseudo-Riemannian spaces; Riemannian spaces; symmetric spaces; Kasner metric; special vector field; pseudo-Riemannian space; Riemannian space; symmetric space; Kasner metric
UR  - http://eudml.org/doc/250510
ER  - 
References
top- Brinkmann, H. W., 10.1007/BF01208647, Math. Ann. 94 (1) (1925), 119–145. (1925) MR1512246DOI10.1007/BF01208647
- Hall, G., Some remarks on the space-time of Newton and Einstein, Fund. Theories Phys. 153 (2007), 13–29. (2007) Zbl1151.83001MR2368238
- Kiosak, V. A., Equidistant Riemannian spaces. Geometry of generalized spaces, Penz. Gos. Ped. Inst., Penza (1992), 37–41. (1992) MR1265502
- Landau, L. D., Lifschitz, E. M., Lehrbuch der theoretischen Physik, II, Klassische Feldtheorie, Akademie Verlag, Berlin, 1973. (1973) MR0431969
- Mikeš, J., 10.1007/BF02365193, J. Math. Sci. 78 (3) (1996), 311–333. (1996) MR1384327DOI10.1007/BF02365193
- Mikeš, J., Hinterleitner, I., Kiosak, V. A., On the theory of geodesic mappings of Einstein spaces and their generalizations, AIP Conf. Proc., 2006, pp. 428–435. (2006)
- Mikeš, J., Rachůnek, L., On tensor fields semiconjugated with torse-forming vector fields, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 44 (2005), 151–160. (2005) Zbl1092.53016MR2218574
- Mikeš, J., Škodová, M., Concircular vector fields on compact spaces, Publ. de la RSME 11 (2007), 302–307. (2007)
- Shandra, I. G., Concircular vector fields on semi-riemannian spaces, J. Math. Sci. 31 (2003), 53–68. (2003) MR2464554
- Yano, K., Concircular Geometry, I-IV. Proc. Imp. Acad., Tokyo, 1940. (1940) Zbl0025.08504
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 