A -representation with no quantum symmetric algebra
- Volume: 10, Issue: 1, page 5-9
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topRossi-Doria, Olivia. "A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 10.1 (1999): 5-9. <http://eudml.org/doc/252276>.
@article{Rossi1999,
	abstract = {We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of \( \mathcal\{U\}\_\{q\} (\mathfrak\{sl\} (2)) \) that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.},
	author = {Rossi-Doria, Olivia},
	journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
	keywords = {Quantized enveloping algebra; Representation; Symmetric algebra},
	language = {eng},
	month = {3},
	number = {1},
	pages = {5-9},
	publisher = {Accademia Nazionale dei Lincei},
	title = {A \( \mathcal\{U\}\_\{q\} (\mathfrak\{sl\} (2)) \)-representation with no quantum symmetric algebra},
	url = {http://eudml.org/doc/252276},
	volume = {10},
	year = {1999},
}
TY  - JOUR
AU  - Rossi-Doria, Olivia
TI  - A \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \)-representation with no quantum symmetric algebra
JO  - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA  - 1999/3//
PB  - Accademia Nazionale dei Lincei
VL  - 10
IS  - 1
SP  - 5
EP  - 9
AB  - We show by explicit calculations in the particular case of the 4-dimensional irreducible representation of \( \mathcal{U}_{q} (\mathfrak{sl} (2)) \) that it is not always possible to generalize to the quantum case the notion of symmetric algebra of a Lie algebra representation.
LA  - eng
KW  - Quantized enveloping algebra; Representation; Symmetric algebra
UR  - http://eudml.org/doc/252276
ER  - 
References
top- Drinfeld, V. G., Hopf algebras and quantum Yang-Baxter equation. Soviet. Math. Dokl., 32, 1985, 254-258. Zbl0588.17015MR802128
- Drinfeld, V. G., Quantum groups. Proc. ICM, Berkeley1986, 1, 798-820. MR934283
- Jimbo, M., A q-difference analogue of and the Yang-Baxter equation. Lett. Math. Phys., 10, 1985, 63-69. Zbl0587.17004MR797001DOI10.1007/BF00704588
- Kassel, C., Quantum groups. Graduate Texts in Math., vol. 155, Springer-Verlag, New York1995. Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Yu, N., Quantized universal enveloping algebra, the Yang-Baxter equation and invariants of links I. LOMI, preprint 1987, no. E-4-87.
- Rosso, M., Finite-dimensional representations of the quantum analogue of the enveloping algebra of a complex simple Lie algebra. Comm. Math. Phys., 117, 1988, 581-593. Zbl0651.17008MR953821
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
  
 