Boolean algebras admitting a countable minimally acting group
Aleksander Błaszczyk; Andrzej Kucharski; Sławomir Turek
Open Mathematics (2014)
- Volume: 12, Issue: 1, page 46-56
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topAleksander Błaszczyk, Andrzej Kucharski, and Sławomir Turek. "Boolean algebras admitting a countable minimally acting group." Open Mathematics 12.1 (2014): 46-56. <http://eudml.org/doc/268974>.
@article{AleksanderBłaszczyk2014,
	abstract = {The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.},
	author = {Aleksander Błaszczyk, Andrzej Kucharski, Sławomir Turek},
	journal = {Open Mathematics},
	keywords = {Projective Boolean algebra; Dense subalgebra; Regular subalgebra; Cohen skeleton; Cohen algebra; Group of automorphisms; projective Boolean algebra; minimally acting group; dense subalgebra; countable chain condition},
	language = {eng},
	number = {1},
	pages = {46-56},
	title = {Boolean algebras admitting a countable minimally acting group},
	url = {http://eudml.org/doc/268974},
	volume = {12},
	year = {2014},
}
TY  - JOUR
AU  - Aleksander Błaszczyk
AU  - Andrzej Kucharski
AU  - Sławomir Turek
TI  - Boolean algebras admitting a countable minimally acting group
JO  - Open Mathematics
PY  - 2014
VL  - 12
IS  - 1
SP  - 46
EP  - 56
AB  - The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.
LA  - eng
KW  - Projective Boolean algebra; Dense subalgebra; Regular subalgebra; Cohen skeleton; Cohen algebra; Group of automorphisms; projective Boolean algebra; minimally acting group; dense subalgebra; countable chain condition
UR  - http://eudml.org/doc/268974
ER  - 
References
top- [1] Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin., 1990, 31(1), 7–11 Zbl0697.54021
 - [2] Balcar B., Franek F., Structural properties of universal minimal dynamical systems for discrete semigroups, Trans. Amer. Math. Soc., 1997, 349(5), 1697–1724 http://dx.doi.org/10.1090/S0002-9947-97-01868-0 Zbl0867.54038
 - [3] Balcar B., Jech T., Zapletal J., Semi-Cohen Boolean algebras, Ann. Pure Appl. Logic, 1997, 87(3), 187–208 http://dx.doi.org/10.1016/S0168-0072(97)00009-2 Zbl0886.03036
 - [4] Bandlow I., On the absolutes of compact spaces with a minimally acting group, Proc. Amer. Math. Soc., 1994, 122(1), 261–264 http://dx.doi.org/10.1090/S0002-9939-1994-1246512-X Zbl0806.54023
 - [5] Błaszczyk A., Irreducible images of βℕ , Rend. Circ. Mat. Palermo, 1984, Suppl. 3, 47–54 Zbl0547.54020
 - [6] Geschke S., A note on minimal dynamical systems, Acta Univ. Carolin. Math. Phys., 2004, 45(2), 35–43 Zbl1065.37008
 - [7] Haydon R., On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim), Studia Math., 1974, 52(1), 23–31 Zbl0294.46016
 - [8] Heindorf L., Shapiro L.B., Nearly Projective Boolean Algebras, Lect. Notes Math., 1596, Springer, Berlin, 1994
 - [9] Koppelberg S., Handbook of Boolean Algebras, 1, North-Holland, Amsterdam, 1989
 - [10] Koppelberg S., Projective Boolean algebras, In: Handbook of Boolean Algebras, 3, North-Holland, Amsterdam, 1989, 741–773
 - [11] Koppelberg S., Characterizations of Cohen algebras, In: Papers on General Topology and Applications, Madison, 1991, Ann. New York Acad. Sci., 704, New York Acad. Sci., New York, 1993, 222–237 Zbl0830.06006
 - [12] Shapiro L.B., On spaces coabsolute to a generalized Cantor discontinuum, Soviet Math. Dokl., 1986, 33, 870–874 Zbl0604.54027
 - [13] Shapiro L.B., On spaces coabsolute to dyadic compacta, Soviet Math. Dokl., 1987, 35, 434–438 Zbl0641.54006
 - [14] Turek S., Minimal dynamical systems for !-bounded groups, Acta Univ. Carolin. Math. Phys., 1994, 35(2), 77–81 Zbl0831.54035
 - [15] Turek S., Minimal actions on Cantor cubes, Bull. Polish Acad. Sci. Math., 2003, 51(2), 129–138 Zbl1047.37005
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.