Seiberg-Witten invariants, the topological degree and wall crossing formula
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 2129-2137
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMaciej Starostka. "Seiberg-Witten invariants, the topological degree and wall crossing formula." Open Mathematics 10.6 (2012): 2129-2137. <http://eudml.org/doc/269419>.
@article{MaciejStarostka2012,
	abstract = {Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.},
	author = {Maciej Starostka},
	journal = {Open Mathematics},
	keywords = {Wall crossing formula; Seiberg-Witten invariants; Bauer-Furuta invariants; Monopole map; Topological degree; monopole map; topological degree},
	language = {eng},
	number = {6},
	pages = {2129-2137},
	title = {Seiberg-Witten invariants, the topological degree and wall crossing formula},
	url = {http://eudml.org/doc/269419},
	volume = {10},
	year = {2012},
}
TY  - JOUR
AU  - Maciej Starostka
TI  - Seiberg-Witten invariants, the topological degree and wall crossing formula
JO  - Open Mathematics
PY  - 2012
VL  - 10
IS  - 6
SP  - 2129
EP  - 2137
AB  - Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.
LA  - eng
KW  - Wall crossing formula; Seiberg-Witten invariants; Bauer-Furuta invariants; Monopole map; Topological degree; monopole map; topological degree
UR  - http://eudml.org/doc/269419
ER  - 
References
top- [1] Bauer S., Furuta M., A stable cohomotopy refinement of Seiberg-Witten invariants I, Invent. Math., 2004, 155(1), 1–19 http://dx.doi.org/10.1007/s00222-003-0288-5[Crossref] Zbl1050.57024
- [2] Bott R., Tu L.W., Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer, New York-Berlin, 1982 Zbl0496.55001
- [3] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref]
- [4] Salamon D.A., Spin Geometry and Seiberg-Witten Invariants, unpublished manuscript
- [5] Taubes C.H., Differential Geometry, Oxf. Grad. Texts Math., 23, Oxford University Press, New York, 2011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 