A note on total colorings of planar graphs without 4-cycles
Discussiones Mathematicae Graph Theory (2004)
- Volume: 24, Issue: 1, page 125-135
 - ISSN: 2083-5892
 
Access Full Article
topAbstract
topHow to cite
topPing Wang, and Jian-Liang Wu. "A note on total colorings of planar graphs without 4-cycles." Discussiones Mathematicae Graph Theory 24.1 (2004): 125-135. <http://eudml.org/doc/270290>.
@article{PingWang2004,
	abstract = {Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ \{(7,4),(6,5),(5,7),(4,14)\}.},
	author = {Ping Wang, Jian-Liang Wu},
	journal = {Discussiones Mathematicae Graph Theory},
	keywords = {total coloring; planar graph; list coloring; girth; chromatic number},
	language = {eng},
	number = {1},
	pages = {125-135},
	title = {A note on total colorings of planar graphs without 4-cycles},
	url = {http://eudml.org/doc/270290},
	volume = {24},
	year = {2004},
}
TY  - JOUR
AU  - Ping Wang
AU  - Jian-Liang Wu
TI  - A note on total colorings of planar graphs without 4-cycles
JO  - Discussiones Mathematicae Graph Theory
PY  - 2004
VL  - 24
IS  - 1
SP  - 125
EP  - 135
AB  - Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.
LA  - eng
KW  - total coloring; planar graph; list coloring; girth; chromatic number
UR  - http://eudml.org/doc/270290
ER  - 
References
top- [1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).
 - [2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. Zbl0653.05029
 - [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G Zbl0883.05053
 - [4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. Zbl0886.05065
 - [5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. Zbl0876.05032
 - [6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987).
 - [7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R. Zbl0793.05059
 - [8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995).
 - [9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893. Zbl0931.05036
 - [10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8. Zbl0695.05023
 - [11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996). Zbl0839.05001
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.