The Wiener number of powers of the Mycielskian
Rangaswami Balakrishnan; S. Francis Raj
Discussiones Mathematicae Graph Theory (2010)
- Volume: 30, Issue: 3, page 489-498
 - ISSN: 2083-5892
 
Access Full Article
topAbstract
topHow to cite
topRangaswami Balakrishnan, and S. Francis Raj. "The Wiener number of powers of the Mycielskian." Discussiones Mathematicae Graph Theory 30.3 (2010): 489-498. <http://eudml.org/doc/270981>.
@article{RangaswamiBalakrishnan2010,
	abstract = {The Wiener number of a graph G is defined as $1/2 ∑_\{u,v ∈ V(G)\} d(u,v)$, d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, $W(μ(Sₙ^k)) ≤ W(μ(Tₙ^k)) ≤ W(μ(Pₙ^k))$, where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of $μ(G^k)$.},
	author = {Rangaswami Balakrishnan, S. Francis Raj},
	journal = {Discussiones Mathematicae Graph Theory},
	keywords = {Wiener number; Mycielskian; powers of a graph},
	language = {eng},
	number = {3},
	pages = {489-498},
	title = {The Wiener number of powers of the Mycielskian},
	url = {http://eudml.org/doc/270981},
	volume = {30},
	year = {2010},
}
TY  - JOUR
AU  - Rangaswami Balakrishnan
AU  - S. Francis Raj
TI  - The Wiener number of powers of the Mycielskian
JO  - Discussiones Mathematicae Graph Theory
PY  - 2010
VL  - 30
IS  - 3
SP  - 489
EP  - 498
AB  - The Wiener number of a graph G is defined as $1/2 ∑_{u,v ∈ V(G)} d(u,v)$, d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, $W(μ(Sₙ^k)) ≤ W(μ(Tₙ^k)) ≤ W(μ(Pₙ^k))$, where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of $μ(G^k)$.
LA  - eng
KW  - Wiener number; Mycielskian; powers of a graph
UR  - http://eudml.org/doc/270981
ER  - 
References
top- [1] X. An and B. Wu, The Wiener index of the kth power of a graph, Appl. Math. Lett. 21 (2007) 436-440, doi: 10.1016/j.aml.2007.03.025. Zbl1138.05321
 - [2] R. Balakrishanan and S.F. Raj, The Wiener number of Kneser graphs, Discuss. Math. Graph Theory 28 (2008) 219-228, doi: 10.7151/dmgt.1402. Zbl1156.05016
 - [3] R. Balakrishanan, N. Sridharan and K.V. Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003. Zbl1152.05322
 - [4] R. Balakrishanan, N. Sridharan and K.V. Iyer, A sharp lower bound for the Wiener Index of a graph, to appear in Ars Combinatoria.
 - [5] R. Balakrishanan, K. Viswanathan and K.T. Raghavendra, Wiener Index of Two Special Trees, MATCH Commun. Math. Comput. Chem. 57 (2007) 385-392.
 - [6] G.J. Chang, L. Huang and X. Zhu, Circular Chromatic Number of Mycielski's graphs, Discrete Math. 205 (1999) 23-37, doi: 10.1016/S0012-365X(99)00033-3. Zbl0941.05026
 - [7] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener Index of Hexagonal Systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303. Zbl0993.05059
 - [8] H. Hajibolhassan and X. Zhu, The Circular Chromatic Number and Mycielski construction, J. Graph Theory 44 (2003) 106-115, doi: 10.1002/jgt.10128. Zbl1030.05047
 - [9] D. Liu, Circular Chromatic Number for iterated Mycielski graphs, Discrete Math. 285 (2004) 335-340, doi: 10.1016/j.disc.2004.01.020. Zbl1050.05054
 - [10] Liu Hongmei, Circular Chromatic Number and Mycielski graphs, Acta Mathematica Scientia 26B (2006) 314-320. Zbl1096.05022
 - [11] J. Mycielski, Sur le colouriage des graphes, Colloq. Math. 3 (1955) 161-162.
 - [12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. Zbl0070.18503
 - [13] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
 - [14] L. Xu and X. Guo, Catacondensed Hexagonal Systems with Large Wiener Numbers, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158. Zbl1088.05071
 - [15] L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194. Zbl1084.05072
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.