An arithmetic Hilbert–Samuel theorem for pointed stable curves
Journal of the European Mathematical Society (2012)
- Volume: 014, Issue: 2, page 321-351
- ISSN: 1435-9855
Access Full Article
topAbstract
topHow to cite
topFreixas i Montplet, Gerard. "An arithmetic Hilbert–Samuel theorem for pointed stable curves." Journal of the European Mathematical Society 014.2 (2012): 321-351. <http://eudml.org/doc/277284>.
@article{FreixasiMontplet2012,
	abstract = {Let $(\mathcal \{O\},\sum , F_\infty )$ be an arithmetic ring of Krull dimension at most $1,\ S=\text\{Spec\}(\mathcal \{O\})$ and $(\mathcal \{X\}\rightarrow S; \sigma _1,\ldots , \sigma _n)$ a pointed stable curve. Write $\mathcal \{U\}=\mathcal \{X\} \setminus \cup _j \sigma _j(S)$. For every integer $k>0$, the invertible sheaf $\omega ^\{k+1\}_\{\mathcal \{X\}/S\} (k\sigma _1+\ldots + k\sigma _n)$ inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface $\mathcal \{U\}_\infty $. In this article we define a Quillen type metric $\left\Vert  \cdot \right\Vert _Q$ on the determinant line $\lambda _\{k+1\}=\lambda \omega ^\{k+1\}_\{\mathcal \{X\}/S\}$$(k\sigma _1 + \ldots + k\sigma _n)$ and compute the arithmetic degree of $(\lambda _\{k+1\}, \left\Vert  \cdot \right\Vert _Q)$ by means of an analogue of the Riemann–Roch theorem in Arakelov geometry. As a byproduct, we obtain an arithmetic Hilbert–Samuel formula: the arithmetic degree of $(\lambda _\{k+1\}, \left\Vert  \cdot \right\Vert _\{L^2\})$) admits an asymptotic expansion in $k$, whose leading coefficient is given by the arithmetic self-intersection of $(\omega _\{\mathcal \{X\}/S\}(k\sigma _1 + \ldots + k\sigma _n), \left\Vert  \cdot \right\Vert _\{hyp\})$. Here $\left\Vert  \cdot \right\Vert _\{L^2\}$ and $\left\Vert  \cdot \right\Vert _\{hyp\}$ denote the $L^2 $metric and the dual of the hyperbolic metric, respectively. Examples of application are given for pointed stable curves of genus 0.},
	author = {Freixas i Montplet, Gerard},
	journal = {Journal of the European Mathematical Society},
	keywords = {Arakelov theory; pointed stable curve; Mumford isomorphism; hyperbolic metric; Quillen metric; Selberg zeta function; Arakelov theory; pointed stable curve; Mumford isomorphism; hyperbolic metric; Quillen metric; Selberg zeta function},
	language = {eng},
	number = {2},
	pages = {321-351},
	publisher = {European Mathematical Society Publishing House},
	title = {An arithmetic Hilbert–Samuel theorem for pointed stable curves},
	url = {http://eudml.org/doc/277284},
	volume = {014},
	year = {2012},
}
TY  - JOUR
AU  - Freixas i Montplet, Gerard
TI  - An arithmetic Hilbert–Samuel theorem for pointed stable curves
JO  - Journal of the European Mathematical Society
PY  - 2012
PB  - European Mathematical Society Publishing House
VL  - 014
IS  - 2
SP  - 321
EP  - 351
AB  - Let $(\mathcal {O},\sum , F_\infty )$ be an arithmetic ring of Krull dimension at most $1,\ S=\text{Spec}(\mathcal {O})$ and $(\mathcal {X}\rightarrow S; \sigma _1,\ldots , \sigma _n)$ a pointed stable curve. Write $\mathcal {U}=\mathcal {X} \setminus \cup _j \sigma _j(S)$. For every integer $k>0$, the invertible sheaf $\omega ^{k+1}_{\mathcal {X}/S} (k\sigma _1+\ldots + k\sigma _n)$ inherits a singular hermitian structure from the hyperbolic metric on the Riemann surface $\mathcal {U}_\infty $. In this article we define a Quillen type metric $\left\Vert  \cdot \right\Vert _Q$ on the determinant line $\lambda _{k+1}=\lambda \omega ^{k+1}_{\mathcal {X}/S}$$(k\sigma _1 + \ldots + k\sigma _n)$ and compute the arithmetic degree of $(\lambda _{k+1}, \left\Vert  \cdot \right\Vert _Q)$ by means of an analogue of the Riemann–Roch theorem in Arakelov geometry. As a byproduct, we obtain an arithmetic Hilbert–Samuel formula: the arithmetic degree of $(\lambda _{k+1}, \left\Vert  \cdot \right\Vert _{L^2})$) admits an asymptotic expansion in $k$, whose leading coefficient is given by the arithmetic self-intersection of $(\omega _{\mathcal {X}/S}(k\sigma _1 + \ldots + k\sigma _n), \left\Vert  \cdot \right\Vert _{hyp})$. Here $\left\Vert  \cdot \right\Vert _{L^2}$ and $\left\Vert  \cdot \right\Vert _{hyp}$ denote the $L^2 $metric and the dual of the hyperbolic metric, respectively. Examples of application are given for pointed stable curves of genus 0.
LA  - eng
KW  - Arakelov theory; pointed stable curve; Mumford isomorphism; hyperbolic metric; Quillen metric; Selberg zeta function; Arakelov theory; pointed stable curve; Mumford isomorphism; hyperbolic metric; Quillen metric; Selberg zeta function
UR  - http://eudml.org/doc/277284
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
