A cluster algebra approach to -characters of Kirillov–Reshetikhin modules
David Hernandez; Bernard Leclerc
Journal of the European Mathematical Society (2016)
- Volume: 018, Issue: 5, page 1113-1159
- ISSN: 1435-9855
Access Full Article
topAbstract
topHow to cite
topHernandez, David, and Leclerc, Bernard. "A cluster algebra approach to $q$-characters of Kirillov–Reshetikhin modules." Journal of the European Mathematical Society 018.5 (2016): 1113-1159. <http://eudml.org/doc/277643>.
@article{Hernandez2016,
	abstract = {We describe a cluster algebra algorithm for calculating $q$-characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra $U_q(\widehat\{\mathfrak \{g\}\})$. This yields a geometric $q$-character formula for tensor products of Kirillov–Reshetikhin modules. When $\mathfrak \{g\}$ is of type $A, D, E$, this formula extends Nakajima’s formula for $q$-characters of standard modules in terms of homology of graded quiver varieties.},
	author = {Hernandez, David, Leclerc, Bernard},
	journal = {Journal of the European Mathematical Society},
	keywords = {quantum affine algebra; cluster algebras; $q$-characters; Kirillov–Reshetikhin modules; geometric character formula; quantum affine algebra; cluster algebras; -characters; Kirillov-Reshetikhin modules; geometric character formula},
	language = {eng},
	number = {5},
	pages = {1113-1159},
	publisher = {European Mathematical Society Publishing House},
	title = {A cluster algebra approach to $q$-characters of Kirillov–Reshetikhin modules},
	url = {http://eudml.org/doc/277643},
	volume = {018},
	year = {2016},
}
TY  - JOUR
AU  - Hernandez, David
AU  - Leclerc, Bernard
TI  - A cluster algebra approach to $q$-characters of Kirillov–Reshetikhin modules
JO  - Journal of the European Mathematical Society
PY  - 2016
PB  - European Mathematical Society Publishing House
VL  - 018
IS  - 5
SP  - 1113
EP  - 1159
AB  - We describe a cluster algebra algorithm for calculating $q$-characters of Kirillov–Reshetikhin modules for any untwisted quantum affine algebra $U_q(\widehat{\mathfrak {g}})$. This yields a geometric $q$-character formula for tensor products of Kirillov–Reshetikhin modules. When $\mathfrak {g}$ is of type $A, D, E$, this formula extends Nakajima’s formula for $q$-characters of standard modules in terms of homology of graded quiver varieties.
LA  - eng
KW  - quantum affine algebra; cluster algebras; $q$-characters; Kirillov–Reshetikhin modules; geometric character formula; quantum affine algebra; cluster algebras; -characters; Kirillov-Reshetikhin modules; geometric character formula
UR  - http://eudml.org/doc/277643
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
