Coloring triangles and rectangles
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 83-96
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZapletal, Jindřich. "Coloring triangles and rectangles." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 83-96. <http://eudml.org/doc/299364>.
@article{Zapletal2023,
	abstract = {It is consistent that ZF + DC holds, the hypergraph of rectangles on a given Euclidean space has countable chromatic number, while the hypergraph of equilateral triangles on $\mathbb \{R\}^2$ does not.},
	author = {Zapletal, Jindřich},
	journal = {Commentationes Mathematicae Universitatis Carolinae},
	keywords = {real algebraic geometry; algebraic hypergraph; chromatic number; geometric set theory; consistency result},
	language = {eng},
	number = {1},
	pages = {83-96},
	publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
	title = {Coloring triangles and rectangles},
	url = {http://eudml.org/doc/299364},
	volume = {64},
	year = {2023},
}
TY  - JOUR
AU  - Zapletal, Jindřich
TI  - Coloring triangles and rectangles
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 2023
PB  - Charles University in Prague, Faculty of Mathematics and Physics
VL  - 64
IS  - 1
SP  - 83
EP  - 96
AB  - It is consistent that ZF + DC holds, the hypergraph of rectangles on a given Euclidean space has countable chromatic number, while the hypergraph of equilateral triangles on $\mathbb {R}^2$ does not.
LA  - eng
KW  - real algebraic geometry; algebraic hypergraph; chromatic number; geometric set theory; consistency result
UR  - http://eudml.org/doc/299364
ER  - 
References
top- Ceder J., Finite subsets and countable decompositions of Euclidean spaces, Rev. Roumaine Math. Pures Appl. 14 (1969), 1247–1251. MR0257307
- Erdös P., Kakutani S., 10.1090/S0002-9904-1943-07954-2, Bull. Amer. Math. Soc. 49 (1943), 457–461. MR0008136DOI10.1090/S0002-9904-1943-07954-2
- Erdös P., Komjáth P., Countable decompositions of and , Discrete Comput. Geom. 5 (1990), no. 4, 325–331. MR1043714
- Ihoda J. I., Shelah S., 10.2307/2274613, J. Symbolic Logic 53 (1998), no. 4, 1188–1207. MR0973109DOI10.2307/2274613
- Jech T., Set Theory, Springer Monographs in Mathematics, Springer, Berlin, 2003. Zbl1007.03002MR1940513
- Larson P., Zapletal J., 10.1090/surv/248, Mathematical Surveys and Monographs, 248, American Mathematical Society, Providence, 2020. MR4249448DOI10.1090/surv/248
- Marker D., Model Theory: An Introduction, Graduate Texts in Mathematics, 217, Springer, New York, 2002. MR1924282
- Schmerl J. H., 10.1090/S0002-9947-99-02331-4, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2479–2489. MR1608502DOI10.1090/S0002-9947-99-02331-4
- Zapletal J., Noetherian spaces in choiceless set theory, available at arXiv:2101.03434v3 [math.LO] (2022), 23 pages.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
