On invariant domains in certain complex homogeneous spaces
Annales de l'institut Fourier (1997)
- Volume: 47, Issue: 4, page 1101-1115
 - ISSN: 0373-0956
 
Access Full Article
topAbstract
topHow to cite
topZhou, Xiang-Yu. "On invariant domains in certain complex homogeneous spaces." Annales de l'institut Fourier 47.4 (1997): 1101-1115. <http://eudml.org/doc/75256>.
@article{Zhou1997,
	abstract = {Given a compact connected Lie group $K$. For a relatively compact $K$-invariant domain $D$ in a Stein $K^\{\Bbb C\}$-homogeneous space, we prove that the automorphism group of $D$ is compact and if $K$ is semisimple, a proper holomorphic self mapping of $D$ is biholomorphic.},
	author = {Zhou, Xiang-Yu},
	journal = {Annales de l'institut Fourier},
	keywords = {Stein homogeneous spaces; automorphism groups; proper holomorphic mappings; invariant domains},
	language = {eng},
	number = {4},
	pages = {1101-1115},
	publisher = {Association des Annales de l'Institut Fourier},
	title = {On invariant domains in certain complex homogeneous spaces},
	url = {http://eudml.org/doc/75256},
	volume = {47},
	year = {1997},
}
TY  - JOUR
AU  - Zhou, Xiang-Yu
TI  - On invariant domains in certain complex homogeneous spaces
JO  - Annales de l'institut Fourier
PY  - 1997
PB  - Association des Annales de l'Institut Fourier
VL  - 47
IS  - 4
SP  - 1101
EP  - 1115
AB  - Given a compact connected Lie group $K$. For a relatively compact $K$-invariant domain $D$ in a Stein $K^{\Bbb C}$-homogeneous space, we prove that the automorphism group of $D$ is compact and if $K$ is semisimple, a proper holomorphic self mapping of $D$ is biholomorphic.
LA  - eng
KW  - Stein homogeneous spaces; automorphism groups; proper holomorphic mappings; invariant domains
UR  - http://eudml.org/doc/75256
ER  - 
References
top- [1] A. ANDREOTTI, T. FRANKEL, The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717. Zbl0115.38405MR31 #1685
 - [2] H. AZAD, J.-J. LOEB, Plurisubharmonic functions and the Kempf-Ness theorem, Bull. London Math. Soc., 25 (1993), 162-168. Zbl0795.32002MR93m:32044
 - [3] E. BEDFORD, Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. Zbl0534.32009MR85b:32041
 - [4] E. BEDFORD, On the automorphism group of a Stein manifold, Math. Ann., 266 (1983), 215-227. Zbl0532.32014MR85h:32049
 - [5] A. BOREL, Symmetric compact complex spaces, Arch. Math., 33 (1979), 49-56. Zbl0423.32015MR80k:32033
 - [6] R. BOTT, L. TU, Differential forms in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982. Zbl0496.55001MR83i:57016
 - [7] G. FELS, L. GEATTI, Invariant domains in complex symmetric spaces, J. reine angew. Math., 454 (1994), 97-118. Zbl0803.32019MR95g:32052
 - [8] F. FORSTNERIČ, Proper holomorphic mappings. A survey, in Proceedings of the special year on several complex variables at Mittag-Leffler Institute, E. Fornaess ed., Princeton University Press, Princeton, 1993. Zbl0778.32008MR94a:32042
 - [9] H. GRAUERT, Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. Zbl0081.07401MR20 #4661
 - [10] W. GREUB, S. HALPERIN, R. VANSTONE, Connections, curvature, and cohomology, Academic Press, New York, London, 1972.
 - [11] P. HEINZNER, Geometric invariant theory on Stein space, Math. Ann., 289 (1991), 631-662. Zbl0728.32010MR92j:32116
 - [12] P. HEINZNER, Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France., 121 (1993), 445-463. Zbl0794.32022MR94i:32050
 - [13] P. HEINZNER, A. HUCKLEBERRY, Invariant plurisubharmonic exhaustions and retractions, Manu. Math., 83 (1994), 19-29. Zbl0842.32010MR95a:32055
 - [14] P. HEINZNER, F. KUTZSCHEBAUCH, An equivariant version of Grauert's Oka principle, Invent. Math., 119 (1995), 317-346. Zbl0837.32004MR96c:32034
 - [15] M. HIRSCH, Differential topology, Springer-Verlag, New York, Heidelberg, Berlin, 1976. Zbl0356.57001MR56 #6669
 - [16] F. HIRZEBRUCH, Topological methods in algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966. Zbl0138.42001MR34 #2573
 - [17] L. HÖRMANDER, An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1966. Zbl0138.06203
 - [18] D. HUSEMOLLER, Fibre bundles, McGraw-Hill, New York et al., 1966. Zbl0144.44804MR37 #4821
 - [19] L. KAUP, B. KAUP, Holomorphic functions of several variables, Walter de Gruyter, Berlin, New York, 1983. Zbl0528.32001
 - [20] S. KOBAYASHI, Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. Zbl0346.32031
 - [21] H. KRAFT, Geomtrische Methoden in der Invariantentheri, Braunschweig-Wiesbaden, Vieweg, 1985.
 - [22] M. LASSALLE, Séries de Laurent des functions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., 11 (1978), 167-210. Zbl0452.43011MR80f:22006
 - [23] W. MASSEY, A basic course in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1991. Zbl0725.55001MR92c:55001
 - [24] J. MILNOR, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. Zbl0084.39002MR20 #6700
 - [25] N. MOK, Rigiditity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann., 266 (1984), 433-447. Zbl0574.32021MR85f:32044
 - [26] R. NARASIMHAN, On the homology group of Stein spaces, Invent. Math., 2 (1967), 377-385. Zbl0148.32202MR35 #7356
 - [27] R. NARASIMHAN, Several complex variables, University of Chicago, Chicago, 1971. Zbl0223.32001MR49 #7470
 - [28] A.L. ONISHCHIK, Topology of transitive transformation groups, Fizmatlit Publishing Company, Moscow, 1994 (Russian). Zbl0796.57001MR95e:57058
 - [29] S. PINCHUK, On proper holomorphic mappings of strictly psedoconvex domains, Siberian Math. J., 15 (1974), 909-917 (Russian). Zbl0303.32016
 - [30] R. REMMERT, K. STEIN, Eigentlische holomorphe Abbildungen, Math. Z., 73 (1960), 159-189. Zbl0102.06903MR23 #A1840
 - [31] N. STEENROD, Topology of fibre bundles, Princeton University Press, Princeton, 1951. Zbl0054.07103MR12,522b
 - [32] V. VARADARAJAN, Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. Zbl0955.22500
 - [33] J. WOLF, Spaces of constant curvature, Publish or Perish, Boston, 1974. Zbl0281.53034MR49 #7958
 - [34] X.Y. ZHOU, On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izvestija RAN., Ser. Math., 58 (1994), 196-205. Zbl0835.32006
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.