Unicité et minimalité des solutions d'une équation de Ginzburg-Landau
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 3, page 305-318
 - ISSN: 0294-1449
 
Access Full Article
topHow to cite
topCarbou, Gilles. "Unicité et minimalité des solutions d'une équation de Ginzburg-Landau." Annales de l'I.H.P. Analyse non linéaire 12.3 (1995): 305-318. <http://eudml.org/doc/78360>.
@article{Carbou1995,
	author = {Carbou, Gilles},
	journal = {Annales de l'I.H.P. Analyse non linéaire},
	keywords = {Ginzburg-Landau equation; minimizing solution},
	language = {fre},
	number = {3},
	pages = {305-318},
	publisher = {Gauthier-Villars},
	title = {Unicité et minimalité des solutions d'une équation de Ginzburg-Landau},
	url = {http://eudml.org/doc/78360},
	volume = {12},
	year = {1995},
}
TY  - JOUR
AU  - Carbou, Gilles
TI  - Unicité et minimalité des solutions d'une équation de Ginzburg-Landau
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1995
PB  - Gauthier-Villars
VL  - 12
IS  - 3
SP  - 305
EP  - 318
LA  - fre
KW  - Ginzburg-Landau equation; minimizing solution
UR  - http://eudml.org/doc/78360
ER  - 
References
top- [1] F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Birkhaüser, 1994. Zbl0802.35142MR1269538
 - [2] H. Brezis, Analyse Fonctionnelle, Masson, 1987. Zbl0511.46001MR697382
 - [3] H. Brezis, F. Merle and T. Rivière, Quantization effects for -Δu = u(1 - |u|2) in R2 , à paraître dansArch. Rat. Mech. Anal. Zbl0809.35019
 - [4] H. Federer, Geometric measure theory, New York, Springer, 1969. Zbl0176.00801MR257325
 - [5] G.W. Gibbons, Topological Defects in Cosmology, Private Communication.
 - [6] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rat. Mech. Anal., Vol. 98, 1987, pp. 123-142. Zbl0616.76004MR866718
 
Citations in EuDML Documents
top- Giovanni Alberti, Some remarks about a notion of rearrangement
 - Alberto Farina, Simmetria delle soluzioni di equazioni ellittiche semilineari in
 - Matteo Novaga, Enrico Valdinoci, Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations
 - Matteo Novaga, Enrico Valdinoci, Multibump solutions and asymptotic expansions for mesoscopic Allen-Cahn type equations
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.