A note on weak approximation of minors
Annales de l'I.H.P. Analyse non linéaire (1995)
- Volume: 12, Issue: 4, page 415-424
 - ISSN: 0294-1449
 
Access Full Article
topHow to cite
topHajłasz, Piotr. "A note on weak approximation of minors." Annales de l'I.H.P. Analyse non linéaire 12.4 (1995): 415-424. <http://eudml.org/doc/78364>.
@article{Hajłasz1995,
	author = {Hajłasz, Piotr},
	journal = {Annales de l'I.H.P. Analyse non linéaire},
	keywords = {variational integrals; nonlinear elasticity; approximation of minors; Sobolev mappings; Suslin sets},
	language = {eng},
	number = {4},
	pages = {415-424},
	publisher = {Gauthier-Villars},
	title = {A note on weak approximation of minors},
	url = {http://eudml.org/doc/78364},
	volume = {12},
	year = {1995},
}
TY  - JOUR
AU  - Hajłasz, Piotr
TI  - A note on weak approximation of minors
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1995
PB  - Gauthier-Villars
VL  - 12
IS  - 4
SP  - 415
EP  - 424
LA  - eng
KW  - variational integrals; nonlinear elasticity; approximation of minors; Sobolev mappings; Suslin sets
UR  - http://eudml.org/doc/78364
ER  - 
References
top- [1] J. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., Vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
 - [2] F. Bethuel, The approximation problem for Sobolev maps between two manifolds, Acta Math., Vol. 167, 1991, pp. 153-206. Zbl0756.46017MR1120602
 - [3] F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Vol. 80, 1988, pp. 60-75. Zbl0657.46027MR960223
 - [4] B. Bojarski, Geometric properties of Sobolev mappings, in: Pitman Res. Notes in Math., Vol. 211, 1989, pp. 225-241. Zbl0689.46014MR1041121
 - [5] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag1989. Zbl0703.49001MR990890
 - [6] M. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys., Vol. 105, 1986, pp. 571-591. Zbl0621.58035MR852091
 - [7] M. Esteban, A new setting for Skyrme's problem, in: Proc. Colloque problèmes variationnels (Paris, June 1988), Boston-Basel-Stuttgart1990. Zbl0724.49007MR1205147
 - [8] M. Esteban and S. Müller, Sobolev maps with the integer degree and applications to Skyrme's problem, Proc. R. Soc. Lond., Vol. 436, 1992, pp. 197-201. Zbl0757.49010MR1177129
 - [9] H. Federer, Geometric Measure Theory, Springer-Verlag1969. Zbl0176.00801MR257325
 - [10] M. Giaquinta, G. Modica and J. Souček, Cartesian currents and variational problems into spheres, Annali Sc. Norm. Sup. Pisa, Vol. 16, 1989, pp. 393-485. Zbl0713.49014MR1050333
 - [11] P. Hajłasz, A Sard type theorem for Borel mappings, Colloq. Math., Vol. 67, 1994, pp. 217-221. Zbl0834.28002MR1305213
 - [12] P. Hajłasz, Approximation of Sobolev mappings, Nonlinear Anal., Vol. 22, 1994, pp. 1579-1591. Zbl0820.46028MR1285094
 - [13] P. Hajłasz, Sobolev mappings, co-area formula and related topics (preprint). MR1847519
 - [14] P. Hajłasz, A note on approximation of Sobolev maps, (in preparation).
 - [15] F. Hélein, Approximation of Sobolev maps between an open set and Euclidean sphere, boundary data, and singularities, Math. Ann., Vol. 285, 1989, pp. 125-140. Zbl0659.35002MR1010196
 - [16] T. Iwaniec and A. Lutoborski, Integral estimates for null lagrangians, Arch. Rat. Mech. Anal., Vol. 125, 1993, pp. 25-80. Zbl0793.58002MR1241286
 - [17] N. Lusin, Sur les ensembles analytiques, Fund. Math., Vol. 10, 1927, pp. 1-95. Zbl53.0171.05JFM53.0171.05
 - [18] N. Lusin and W. Sierpiński, Sur quelques propriétés des ensembles (A), Bull. de l'Acad. de Cracovie, 1918, p. 44. JFM46.0296.04
 - [19] J. Malý, Lp-approximation of Jacobians, Comm. Math. Univ. Carolinae, Vol. 32, 1991, pp. 659-666. Zbl0753.46024MR1159812
 - [20] V. Maz'ya, Sobolev Spaces, Springer-Verlag1985. MR817985
 - [21] S. Müller, Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, Vol. 307, Série I, 1988, pp. 501-506. Zbl0679.34051MR964116
 - [22] S. Müller, Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math., Vol. 412, 1990, pp. 20-34. Zbl0713.49004MR1078998
 - [23] S. Müller, Det=det. A remark on the distributional determinant, C. R. Acad. Sci. Paris, Vol. 313, 1990, pp. 13-17. Zbl0717.46033MR1062920
 - [24] S. Müller, T. Qi and B.S. Yan, On a new class of elastic deformations not allowing for cavitation, Ann. I.H.P. Anal. Nonl., Vol. 11, 1994, pp. 217-243. Zbl0863.49002MR1267368
 - [25] O. Nikodym, Sur une classe de fonctions considérées le problème de Dirichlet, Fund. Math., Vol. 21, 1933, pp. 129-150. Zbl0008.15903JFM59.0290.01
 - [26] Y.G. Reshetnyak, On the stability of conformal mappings in multidimensional space, Siberian Math. J., Vol. 8, 1967, pp. 65-85. Zbl0172.37801
 - [27] W. Rudin, Real and Complex Analysis, Third edition, Mc Graw-Hill, New York1987. Zbl0925.00005MR924157
 - [28] R. Schoen and K. Uhlenbeck, Approximation theorems for Sobolev mappings, (preprint). Zbl0521.58021
 - [29] V. Šverak, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal., Vol. 100, 1988, pp. 105-127. Zbl0659.73038MR913960
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.