Représentations exceptionnelles des groupes semi-simples
Annales scientifiques de l'École Normale Supérieure (1985)
- Volume: 18, Issue: 2, page 345-387
 - ISSN: 0012-9593
 
Access Full Article
topHow to cite
topBrion, M.. "Représentations exceptionnelles des groupes semi-simples." Annales scientifiques de l'École Normale Supérieure 18.2 (1985): 345-387. <http://eudml.org/doc/82161>.
@article{Brion1985,
	author = {Brion, M.},
	journal = {Annales scientifiques de l'École Normale Supérieure},
	keywords = {rational representations; semisimple group; exceptional representations; simple groups; singularities},
	language = {fre},
	number = {2},
	pages = {345-387},
	publisher = {Elsevier},
	title = {Représentations exceptionnelles des groupes semi-simples},
	url = {http://eudml.org/doc/82161},
	volume = {18},
	year = {1985},
}
TY  - JOUR
AU  - Brion, M.
TI  - Représentations exceptionnelles des groupes semi-simples
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1985
PB  - Elsevier
VL  - 18
IS  - 2
SP  - 345
EP  - 387
LA  - fre
KW  - rational representations; semisimple group; exceptional representations; simple groups; singularities
UR  - http://eudml.org/doc/82161
ER  - 
References
top- [1] G. SCHWARZ, Representations of Simple Lie Groups with Regular Rings of Invariants (Invent. Math., vol. 49, 1978, p. 167-191). Zbl0391.20032MR80m:14032
 - [2] G. SCHWARZ, Representations of Simple Lie Groups with a Free Module of Covariants (invent. Math., vol. 50, 1978, p. 1-12). Zbl0391.20033MR80c:14008
 - [3] V. KAČ, Some Remarks on Nilpotent Orbits (J. Alg., vol. 64, 1980, p. 190-213). Zbl0431.17007MR81i:17005
 - [4] H. KRAFT et C. PROCESI, Closures of Conjugacy Classes of Matrices are Normal (Invent. Math., vol. 53, 1979, p. 227-247). Zbl0434.14026MR80m:14037
 - [5] M. BRION, Sur certaines représentations des groupes semi-simples (C.R. Acad. Sc., t. 296, série I, 1983, p. 5-6). Zbl0538.14007MR84b:14027
 - [6] M. BRION, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple (Ann. Inst. Fourier, t. 33, fasc. I, 1983, p. 1-27). Zbl0475.14038MR85a:14031
 - [7] R. FOSSUM et B. IVERSEN, On Picard Groups of Some Algebraic Fiber Spaces (J. Pure Appl. Algebra, vol. 3, 1973, p. 269-280). Zbl0277.14005MR50 #9864
 - [8] G. KEMPF, Toroidal Embeddings (Springer L.N., n° 339). Zbl0271.14017MR49 #299
 - [9] N. BOURBAKI, Groupes et algèbres de Lie, chap. VII et VIII, Hermann.
 - [10] D. E. LITTLEWOOD, The Theory of Group Characters, Oxford University Press. Zbl0011.25001
 - [11] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford University Press. Zbl0487.20007
 - [12] D. E. LITTLEWOOD, Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups (Can. J. Math., vol. 10, 1958, p. 17-32). Zbl0079.03604MR20 #1715
 - [13] H. WEYL, Cesammelte Abhandlungen, Band III.
 - [14] R. C. KING, Spinor representations (Lecture Notes in Physics, n° 50) ; Group Theoretical Methods in Physics, Springer-Verlag. Zbl0369.22017MR58 #1043
 - [15] D. E. LITTLEWOOD, On the Concomitants of Spin Tensors (Proc. London Math. Soc., (2), vol. 49, 1947, p. 307-327). Zbl0033.00902MR9,76c
 - [16] M. KRÄMER, Eine Klassifikation bestimmter Untergruppen kompakter Liegruppen (Comm. in Algebra, vol. 3, 1975, p. 691-737). Zbl0309.22013MR51 #13140
 - [17] W. LICHTENSTEIN, A System of Quadrics Describing the Orbit of the Highest Weight Vector (Proc. A.M.S., vol. 84, n° 4, avril 1982). Zbl0501.22017MR83h:14046
 - [18] E. VINBERG et V. POPOV, On a Class of Quasihomogeneous Varieties (Math. U.S.S.R. Izv., vol. 6, 1972, p. 743-748). Zbl0255.14016MR47 #1815
 - [19] W. BORHO et H. KRAFT, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen (Comm. Math. Helv., vol. 54, 1979, p. 61-104). Zbl0395.14013MR82m:14027
 - [20] S. J. HARIS, Some Irreducible Representations of Exceptional Algebraic Groups (Amer. J. Maths., vol. 93, 1971, p. 75-106). Zbl0215.39603MR43 #4829
 - [21] J. G. MARS, Les nombres de Tamagawa de certains groupes exceptionnels (Bull. Soc. Math. Fr., t. 94, 1966, p. 97-140). Zbl0146.04601MR35 #4227
 - [22] J. I. IGUSA, A Classification of Spinors up to Dimension Twelve (Amer. J. Math., vol. 92, 1970, p. 997-1028). Zbl0217.36203MR43 #3291
 - [23] G. KEMPF, Images of Homogeneous Vector Bundles and Varieties of Complexes (Bull. Amer. Math. Soc., vol. 81, 1975, n° 5, p. 900-901). Zbl0322.14020MR52 #5689
 - [24] C. DE CONCINI et E. STRICKLAND, On the Variety of Complexes (Adv. in Maths, vol. 41, 1981, n° 1, p. 57-77). Zbl0471.14026MR82m:14032
 - [25] Th. VUST, Sur la théorie des invariants des groupes classiques (Ann. Inst. Fourier, vol. 26, n° 1, 1976, p. 1-31). Zbl0314.20035MR53 #8082
 
Citations in EuDML Documents
top- M. Brion, Classification des espaces homogènes sphériques
 - Yannis Y. Papageorgiou, , the cubic and the quartic
 - Caroline Gruson, Sur l'idéal du cône autocommutant des super algèbres de Lie basiques classiques et étranges
 - G. C. M. Ruitenburg, Invariant ideals of polynomial algebras with multiplicity free group action
 - Dmitri Panyushev, On deformation method in invariant theory
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.