The dual braid monoid
Annales scientifiques de l'École Normale Supérieure (2003)
- Volume: 36, Issue: 5, page 647-683
 - ISSN: 0012-9593
 
Access Full Article
topHow to cite
topBessis, David. "The dual braid monoid." Annales scientifiques de l'École Normale Supérieure 36.5 (2003): 647-683. <http://eudml.org/doc/82614>.
@article{Bessis2003,
	author = {Bessis, David},
	journal = {Annales scientifiques de l'École Normale Supérieure},
	keywords = {Artin groups; finite Coxeter systems; braid monoids; Garside monoids},
	language = {eng},
	number = {5},
	pages = {647-683},
	publisher = {Elsevier},
	title = {The dual braid monoid},
	url = {http://eudml.org/doc/82614},
	volume = {36},
	year = {2003},
}
TY  - JOUR
AU  - Bessis, David
TI  - The dual braid monoid
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2003
PB  - Elsevier
VL  - 36
IS  - 5
SP  - 647
EP  - 683
LA  - eng
KW  - Artin groups; finite Coxeter systems; braid monoids; Garside monoids
UR  - http://eudml.org/doc/82614
ER  - 
References
top- [1] Bessis D., Zariski theorems and diagrams for braid groups, Invent. Math.145 (2001) 487-507. Zbl1034.20033MR1856398
 - [2] Bessis D., Digne F., Michel J., Springer theory in braid groups and the Birman–Ko–Lee monoid, Pacific J. Math.205 (2002) 287-310. Zbl1056.20023MR1922736
 - [3] Birman J., Ko K.H., Lee S.J., A new approach to the word and conjugacy problem in the braid groups, Adv. Math.139 (2) (1998) 322-353. Zbl0937.20016MR1654165
 - [4] Bourbaki N., Groupes et algèbres de Lie, Hermann, 1968, chapitres IV, V et VI. Zbl0483.22001MR240238
 - [5] Brady T., A partial order on the symmetric group and new K(π,1)'s for the braid groups, Adv. Math.161 (2001) 20-40. Zbl1011.20040
 - [6] Brady T., Watt C., A partial order on the orthogonal group, Comm. Algebra30 (2002) 3749-3754. Zbl1018.20040MR1922309
 - [7] Brady T., Watt C., K(π,1)'s for Artin groups of finite type, Geom. Dedicata94 (2002) 225-250. Zbl1053.20034
 - [8] Bremke K., Malle G., Reduced words and a length function for G(e,1,n), Indag. Math. (N.S.)8 (4) (1997) 453-469. Zbl0914.20036MR1621909
 - [9] Brieskorn E., Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math.12 (1971) 57-61. Zbl0204.56502MR293615
 - [10] Brieskorn E., Saito K., Artin-Gruppen und Coxeter-Gruppen, Invent. Math.17 (1972) 245-271. Zbl0243.20037MR323910
 - [11] Broué M., Michel J., Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne–Lusztig associées, in: Proceedings de la Semaine de Luminy “Représentations des groupes réductifs finis, Birkhäuser, 1996, pp. 73-139. Zbl1029.20500
 - [12] Broué M., Malle G., Rouquier R., Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math.500 (1998) 127-190. Zbl0921.20046MR1637497
 - [13] Carter R.W., Conjugacy classes in the Weyl groups, Compositio Math.25 (1972) 1-52. Zbl0254.17005MR318337
 - [14] Charney R., Meier J., Whittlesey K., Bestvina's normal form complex and the homology of Garside groups, preprint, 2001. Zbl1064.20044
 - [15] Corran R., A normal form for a class of monoids including the singular braid monoids, J. Algebra223 (2000) 256-282. Zbl0971.20035MR1738262
 - [16] Dehornoy P., Groupes de Garside, Ann. Sci. Éc. Norm. Sup. (4)35 (2002) 267-306. Zbl1017.20031MR1914933
 - [17] Dehornoy P., Paris L., Gaussian groups and Garside groups, two generalizations of Artin groups, Proc. London Math. Soc.79 (1999) 569-604. Zbl1030.20021MR1710165
 - [18] Deligne P., Les immeubles des groupes de tresses généralisés, Invent. Math.17 (1972) 273-302. Zbl0238.20034MR422673
 - [19] Deligne P., Action du groupe des tresses sur une catégorie, Invent. Math.128 (1997) 159-175. Zbl0879.57017MR1437497
 - [20] Fomin S., Zelevinsky A., Y-systems and generalized associahedra, Ann. Math. (2003), submitted for publication. Zbl1057.52003MR2031858
 - [21] Garside F.A., The braid group and other groups, Quart. J. Math. Oxford, 2 Ser.20 (1969) 235-254. Zbl0194.03303MR248801
 - [22] Gilbert N.D., Howie J., LOG groups and cyclically presented groups, J. Algebra174 (1995) 118-131. Zbl0851.20025MR1332862
 - [23] Han J.W., Ko K.H., Positive presentations of the braid groups and the embedding problem, Math. Z.240 (2002) 211-232. Zbl1078.20039MR1906714
 - [24] Michel J., A note on words in braid monoids, J. Algebra215 (1999) 366-377. Zbl0937.20017MR1684142
 - [25] Picantin M., Explicit presentations for the dual braid monoids, C. R. Math. Acad. Sci. Paris334 (10) (2002) 843-848. Zbl1020.20027MR1909925
 - [26] Reiner V., Non-crossing partitions for classical reflection groups, Discrete Math.177 (1997) 195-222. Zbl0892.06001MR1483446
 - [27] Schönert M. et al. , GAP – Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994. Zbl0925.20009
 - [28] Sergiescu V., Graphes planaires et présentations des groupes de tresses, Math. Z.214 (1993) 477-490. Zbl0819.20040MR1245207
 - [29] Solomon L., Invariants of finite reflection groups, Nagoya Math. J.22 (1963) 57-64. Zbl0117.27104MR154929
 - [30] Springer T.A., Regular elements of finite reflection groups, Invent. Math.25 (1974) 159-198. Zbl0287.20043MR354894
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.