Ordered categories with involution
M. S. Calenko; V. B. Gisin; D. A. Raikov
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984
Access Full Book
topAbstract
topHow to cite
topM. S. Calenko, V. B. Gisin, and D. A. Raikov. Ordered categories with involution. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268528>.
@book{M1984,
	abstract = {CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110},
	author = {M. S. Calenko, V. B. Gisin, D. A. Raikov},
	keywords = {ordered categories with involution; correspondence categories; bibliography},
	language = {eng},
	location = {Warszawa},
	publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
	title = {Ordered categories with involution},
	url = {http://eudml.org/doc/268528},
	year = {1984},
}
TY  - BOOK
AU  - M. S. Calenko
AU  - V. B. Gisin
AU  - D. A. Raikov
TI  - Ordered categories with involution
PY  - 1984
CY  - Warszawa
PB  - Instytut Matematyczny Polskiej Akademi Nauk
AB  - CONTENTSIntroduction..........................................................................................................................................................................5§1. Categories with involution, ordered categories and ordered categories with involution.................................................8§2. Types of morphisms regularity in an OI-category. Functional and difunctional morphisms...........................................17§3. Equivalences and coequivalences. Congruences and cocongruences........................................................................25§4. Modular categories and correspondence categories...................................................................................................31§5. A construction of correspondence categories. Admissible and exact functors.............................................................40§6. Correspondences over sites........................................................................................................................................52§7. Modular categories with images...................................................................................................................................58§8. Correspondence categories over categories of classes R₁-R₃....................................................................................62§9. Correspondence categories over exact categories......................................................................................................69§10. OI-categories with a quasinull object..........................................................................................................................75§11. Correspondence categories over exact categories with a null object, over additive and abelian categories..............83§12. Quaternar categories.................................................................................................................................................88§13. Construction of quaternar categories.........................................................................................................................93§14. Supplementary notes and questions........................................................................................................................105References.......................................................................................................................................................................110
LA  - eng
KW  - ordered categories with involution; correspondence categories; bibliography
UR  - http://eudml.org/doc/268528
ER  - 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
